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A new augmented Biderman model inspired by the modified couple stress theory has been
introduced to investigate the size effect in addition to nonlinear material effects. Then, this
model is used to investigate free vibration of a hyper-elastic microbeam. Classical Biderman
strain energy does not include the effect of small size in hyper-elastic materials. In order
to consider the effect of small size, terms inspired by the modified couple stress theory are
added to the classical Biderman strain energy function. In order to provide the possibility
of calculating these terms, a relation between the material constants in the hyper-elastic
Biderman model and the linear elastic constants is obtained. The equations of motion of
the microbeam is obtained based on the extended Hamilton principle, and then is solved
using Galerkin discretization and perturbation methods. The effect of thickness to length
scale ratio on the normalized frequency is studied for different modes. It is shown that
when thickness gets larger in comparison with the length scale parameter, the normalized
frequency tends to classical Biderman results. The results obtained are validated by results
of the Runge-Kutta numerical method and indicate an excellent agreement. Mode shapes
of the microbeam based on the classical and the augmented models are depicted, where the
augmented model anticipates stiffer behavior for hyperelastic microbeams.

Keywords: nonlinear vibration, hyper-elastic microbeam, augmented Biderman model, mo-
dified couple stress theory

1. Introduction

Dielectric Elastomers (DEs) made of hyper-elastic materials fitted between two compatible elec-
trodes were discovered in the early 1990’s (Perline et al., 2002). These materials have recently
attracted much attention. Some of their special features include high strain, low cost, simplicity
of structure, robustness due to the use of stable and commercially available polymer materials,
high energy production (Mockensturm and Goulbourne, 2006; Feng et al., 2014; Carpi et al.,
2011). These have made it possible to make devices such as artificial muscles sensors, actuators,
generators and energy harvesting devices (Löwe et al., 2005; Chakravarty, 2014; Feng et al.,
2011; Zhang et al., 2005).

An important advantage of a dielectric elastomer used in the resonator – in comparison to
conventional silicon – is easy adjusting just after manufacturing (Zhang et al., 2005; Ogden
and Roxburgh, 1993). The dielectric elastomer includes material nonlinearity and it should be
modeled properly. Few articles are reported in accounting this property, and majority of them
deal only with geometric nonlinearity. Some of these articles are presented here.

Verron et al. (1999) analyzed dynamic inflation of hyper-elastic spherical membranes of a
Mooney-Rivlin material. Also they examined oscillatory inflation around the static fixed point
and found that, for a given material, the frequency of oscillation exhibited a maximum at some
pressure level, which tended to increase for materials closer to neo-Hookean behavior.
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Dubois et al. (2008) presented modeling of the first mode resonance frequency of a dielectric
electro-active polymer membrane. They deduced that the electrostatic force from the applied
voltage effectively softened the device and reduced its resonance frequency, in principle to zero
at the buckling threshold. In addition, an excellent agreement was found between the measure-
ments. An analytical model was developed based on the Rayleigh-Ritz theory.

Zhang et al. (2005) constructed a micro-bridge polymer resonator. They showed that the
quality factor in the vacuum would be about 100, which would be reduced by increasing air
pressure as a result of air damping.

Soares and Gonçalves (2012) presented mathematical modeling of the nonlinear vibration of a
prestretched hyperelastic annular membrane under finite deformation. The membrane material
was assumed homogeneous, isotropic and neo-Hookean. They obtained vibration modes and
frequencies of the hyper-elastic membrane by analytical and numerical methods and then reduced
the order of the models for noneonlinear dynamic analysis, which was achieved by the Galerkin
method. They used the finite element model to check the accuracy of the reduced order model.

Danaee Barforooshi and Karami Mohammadi (2016) considered a hyperelastic microbeam
with geometric and material nonlinearity. Geometric nonlinearity was introduced by von Kármán
and Yeoh, and neo-Hookean models were used for the material nonlinearity. They showed that the
neo-Hookean model was not suitable for this case because of insufficient terms in its strain-energy
function. They used a perturbation technique for solving the nonlinear governing equation and
achieved a good agreement between analytical and numerical results. They showed a significant
effect of the number of modes on the normalized frequency where in higher modes the effect of
the aspect ratio was also increased.

Karami Mohammadi and Danaee Barforooshi (2017) studied nonlinear forced vibration of
microbeams made of a dielectric elastomer. Hyperelastic Yeoh model was used to consider non-
linear behavior of the material, and solving the governing equations was done using the multiple
scales method. The results obtained from the frequency response indicated that the microbeam
had hardening behavior and the hardening was more intense in higher modes. When the mode
number increased, the amplitude decreased, and the amplitude of the force had a direct effect
on the start of bifurcation.

Several non-classical theories have been introduced to incorporate size dependency in linear
elasticity, such as couple stress theory (Mindlin and Tiersten, 1962), strain gradient (Akgöz and
Civalek, 2013; Abbasi and Mohammadi, 2014), nonlocal elasticity (Eringen, 1972; Aranda-Ruiz
et al., 2012), and a modified couple stress theory (Yang et al., 2002).

Ke et al. (2012) proposed a Mindlin microplate model for vibration analysis of elastic mi-
croplates. The governing equations and boundary conditions were derived using the Hamilton
principle. They studied the influence of the length scale parameter, side-to-thickness ratio and
the aspect ratio on free vibration of the microplate. They found that size effect was only impor-
tant at small ratios of the length scale parameter to thickness.

Kahrobaiyan et al. (2014) derived governing equations of a Timoshenko elastic beam based
on the modified couple stress theory. They evaluated static deflection of a short beam and pull-in
voltage of an electrostatically actuated silicon microcantilever by the proposed method. Final
results were compared with those of FEM and a good agreement was achieved between them.

Wang et al. (2015) described nonlinear bending and thermal post-buckling of an Euler-
-Bernoulli elastic beam in accordance with the modified couple stress theory. They formulated
the governing equation of motion through the equilibrium of an infinitesimal element including
the size effect and von Kármán nonlinear theory. It was shown that the microbeam behaved
relatively stiffer by incorporating the size effect and Poisson’s ratio.

So far, no researcher has proposed a model for hyperelastic beam that incorporates the effect
of small size, and such a model has not yet been developed.
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In this paper, a new augmented Biderman model inspired by the modified couple stress theory
has been introduced to investigate the size effect in addition to the nonlinear material effects.
Then, this model is used to investigate free vibration of a hyper-elastic microbeam. In order to
consider the effect of small size, terms inspired by the modified couple stress theory are added to
the classical Biderman strain energy function. In order to provide the possibility of calculating
these terms, a relation between material constants in the hyper-elastic Biderman model and
linear elastic constants is obtained. The equations of motion of the microbeam is obtained
based on the extended Hamilton principle, and then is solved using Galerkin discretization
and perturbation methods. The effect of the thickness to length scale ratio on the normalized
frequency is studied for different modes. It is shown that when thickness gets larger in comparison
with the length scale parameter, the normalized frequency tends to classical Biderman results.
The results obtained are validated by the results from the Runge-Kutta numerical method and
indicate an excellent agreement. Mode shapes of the microbeam based on the classical and the
augmented models are depicted, where the augmented model anticipates stiffer behavior for
hyperelastic microbeams.

2. Basics of the modified couple stress theory

According to the modified couple stress theory developed by Yang et al. (2002), the strain
energy density is a function of both strain and curvature tensors. The strain energy of an elastic
continuum occupying the volume V is given as

Π =
1

2

∫

V

(σ : ε+m : χ) dV (2.1)

where σ, ε, m and χ refer to classical stress, strain tensors, deviatoric part of the couple stress
tensor and the symmetric curvature tensor, respectively. These tensors are defined by (Yang et
al., 2002)

σ = λ tr (ε)I + 2µε εij =
1

2

(∂ui
∂xj
+
∂uj
∂xi
+
∂uk
∂xj

∂uk
∂xi

)

m = 2µl2χ χ =
1

2
(θ ⊗∇+∇⊗ θ)

(2.2)

where u is the displacement and θ is the rotation vector defined as

θ =
1

2
curl (u) (2.3)

It should be mentioned that l stands for the length scale parameter.

3. Augmented Biderman model

The Biderman model is one of the polynomial models that include terms for i = 0 or j = 0 in
the Mooney-Rivlin model. This model has three terms for I1 and a term for I2 (Marckmann and
Verron, 2006)

W = c10(I1 − 3) + c01(I2 − 3) + c20(I1 − 3)2 + c30(I1 − 3)3 (3.1)

In order to consider the effect of small size on behavior of hyperelastic components such as
microbeams, Equation (2.1) and the terms related to m and χ are added to the Biderman
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model, so a novel “augmented Biderman model” inspired by the modified couple stress theory
is introduced as

Π =

∫

V

[c10(I1 − 3) + c01(I2 − 3) + c20(I1 − 3)2 + c30(I1 − 3)3 +mxyχxy] dV (3.2)

In order to determine the components of m, due to Equation (2.2)3, the shear modulus µ is
estimated according to the Biderman constants of Eq. (3.1).

The test considered here is the uniaxial tension, so the stress components should be intro-
duced as

σ1 = σ σ2 = σ3 = 0 (3.3)

The stress-strain relation for hyper-elastic materials is

σij = −pδij + 2
(∂W
∂I1

)

I1=3
Cij − 2

∂W

∂I2

1

Cij
(3.4)

On the other hand, the right Cauchy-Green deformation tensor is

C = FTF =



2ε11 + 1 0 2ε13
0 1 0
2ε13 0 1


 (3.5)

and the stress constants could be written as

I1 = tr (C) = 2εxx + 3

I2 =
1

2
[ tr (C)2 − tr (C2)] = 4εxx − 4ε2xz + 3

(3.6)

Applying (3.3) into (3.4) leads to

σij = 2
(∂W
∂I1

)

I1=3
(Cij − δij) + 2

∂W

∂I2

(
δij −

1

Cij

)
(3.7)

Writing Equation (3.7) in a suitable form and using equations (3.1), (3.5) and (3.6) leads to the
shear stress and shear strain relation as

τ13 = 4(c10 + c01)ε13 (3.8)

where 4(c10 + c01) plays the role of the shear modulus µ.

4. Governing equations

In this Section, governing equations of motion are derived based on the new “augmented Bider-
man model” (3.2). It should be mentioned that a simply-supported hyper elastic microbeam has
length L , height d and width b, as it is shown in Fig. 1.

Fig. 1. Schematic of the microbeam
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Displacement components are described as

u = −zφ(x, t) v = 0 w = w(x, t) (4.1)

Due to large deformation, Lagrange strain tensor should be used. Therefore, according to Eq.
(2.2)2, its components are

εxx = −z
∂φ

∂x
+
1

2

(∂w
∂x

)2
εxz = εzx ≃

1

2

(∂w
∂x
− φ
)

(4.2)

All other strain components are zero.
The only non-zero components of the symmetric curvature tensor will be

χxy = χyx = −
1

4

(∂2w
∂x2
+
∂φ

∂x

)
(4.3)

To investigate the governing equations of motion, kinetic energy is

T =
ρ

2

l∫

0

[
I
(∂φ
∂t

)2
+A
(∂w
∂t

)2]
dx (4.4)

And for potential energy, the novel “augmented Biderman model” (3.2) is applied

Π =

∫

V

[c10(I1 − 3) + c01(I2 − 3) + c20(I1 − 3)2 + c30(I1 − 3)3 +mxyχxy] dV (4.5)

Applying Eqs. (4.4) and (4.5) into the extended Hamilton principle, the final governing equations
are achieved

ρI
∂2φ

∂t2
− 2c01Aφ+ 2c01A

∂w

∂x
−
(
8c20I +

µl2A

4

)∂2φ
∂x2

− 24c30I
[∂2φ
∂x2

(∂w
∂x

)2
+ 2
∂2w

∂x2
∂w

∂x

∂φ

∂x

]
− µl

2A

4

∂3w

∂x3
= 0

ρA
∂2w

∂t2
− (2c10 + 2c01)A

∂2w

∂x2
− 2c01A

∂φ

∂x
− 12c20A

∂2w

∂x2

(∂w
∂x

)2
− 30c30A

(∂w
∂x

)4 ∂2w
∂x2

− 24c30I
[∂2w
∂x2

(∂φ
∂x

)2
+ 2
∂2φ

∂x2
∂φ

∂x

∂w

∂x

]
+
µl2A

4

∂4w

∂x4
+
µl2A

4

∂3φ

∂x3
= 0

(4.6)

Boundary conditions extracted from the Hamilton principle are

at x = 0, L : 2(c10 + c01)A
∂w

∂x
+ 2c01Aφ+ 4c20A

(∂w
∂x

)3
+ 6c30A

(∂w
∂x
)5

+ 24c30I
∂w

∂x

(∂φ
∂x

)2
− µAl

2

4

(∂3w
∂x3
+
∂2φ

∂x2

)
= 0 or δw = 0

at x = 0, L : 8c20I
∂φ

∂x
+ 24c30I

∂φ

∂x

(∂w
∂x

)2
+
µAl2

4

(∂2w
∂x2
+
∂φ

∂x

)
= 0

or δφ = 0

(4.7)

Boundary conditions chosen from Eqs. (4.7) for the simply supported beam are

at x = 0, L : w = 0 and 8c20I
∂φ

∂x
+ 24c30I

∂φ

∂x

(∂w
∂x

)2
+
µAl2

4

(∂2w
∂x2
+
∂φ

∂x

)
= 0 (4.8)

Equations (4.6) can be written in a non-dimensioned form by introducing the following parame-
ters

x∗ =
x

L
w∗ =

w

d
t∗ = tωdim φ∗ = φ (4.9)

where ωdim is the natural frequency of the linear Euler-Bernoulli microbeam.
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Substituting these parameters into Eqs. (4.6), non-dimensional governing equations can be
introduced as (the stars are removed for simplicity)

∂2φ

∂t2
− β1φ+ β2

∂w

∂x
− β3
∂2φ

∂x2
− β4
[∂2φ
∂x2

(∂w
∂x

)2
+ 2
∂2w

∂x2
∂w

∂x

∂φ

∂x

]
− β5
∂3w

∂x3
= 0

∂2w

∂t2
− β6
∂2w

∂x2
− β7
∂φ

∂x
− β8
∂2w

∂x2

(∂w
∂x

)2
− β9
(∂w
∂x

)4∂2w
∂x2

− β10
[∂2w
∂x2

(∂φ
∂x

)2
+ 2
∂2φ

∂x2
∂φ

∂x

∂w

∂x

]
+ β11

∂4w

∂x4
+ β12

∂3φ

∂x3
= 0

(4.10)

where

β1 =
2c01A

ρIω2dim
β2 =

2c01Ad

ρILω2dim
β3 =

32c20I + µAl
2

4ρL2ω2dim
β4 =

24c30d
2

ρL4ω2dim

β5 =
µAl2d

4ρL3Iω2dim
β6 =

2c10 + 2c01
ρL2ω2dim

β7 =
2c01
ρLdω2dim

β8 =
12c20d

2

ρL4ω2dim

β9 =
30c30d

4

ρL6ω2dim
β10 =

24c30I

ρAl4ω2dim
β11 =

µl2

4ρL4ω2dim
β12 =

µl2

4ρL3dω2dim

with the boundary conditions

at x = 0, 1 : w = 0 and 8c20I
∂φ

∂x
+ 24c30I

∂φ

∂x

(∂w
∂x

)2
+
µAl2

4

(∂2w
∂x2
+
∂φ

∂x

)
= 0 (4.11)

5. Solution procedure

In order to investigate the nonlinear vibration of the microbeam, the Galerkin method with the
first mode approximation can be employed. So the deflection of the microbeam can be assumed
as X(x)q(t), where X(x) represents the first mode shape and q(t) shows the time variable
(Kahrobaiyan et al., 2014)

φ(x, t) = X1(x)q1(t) X1(x) =
√
2 cos(mπx)

w(x, t) = X2(x)q2(t) X2(x) =
√
2 sin(mπx)

(5.1)

Using the Galerkin method and inserting Eqs. (5.1) into Eqs. (4.10) leads to two coupled equ-
ations with the time variable

q̈1 + (β3m
2π2 − β1)q1 + (β2mπ + β5m3π3)q2 +

(β4m4π4

2

)
q1q
2
2 = 0

q̈2 − (β6m2π2)q2 + (β7mπ)q1 +
(β8m4π4

2

)
q32 +

(β9m6π6

2

)
q52

+
(β10m4π4

2

)
q2q
2
1 + (β11m

4π4)q42 + (β12m
3π3)q31 = 0

(5.2)

Applying the transformed variable τ = ωt to Eqs. (5.2) leads to

ω2q̈1 + α1q1 + α2q2 + α3q1q
2
2 = 0

ω2q̈2 + α4q2 + α5q1 + α6q
3
2 + α7q

5
2 + α8q2q

2
1 + α9q

4
2 + α10q

3
1 = 0

(5.3)

which

α1 = β3m
2π2 − β1 α2 = β2mπ + β5m

3π3 α3 =
β4m

4π4

2

α4 = −β6m2π2 α5 = β7mπ α6 =
β8m

4π4

2
α7 =

β9m
6π6

2

α8 =
β10m

4π4

2
α9 = β11m

4π4 α10 = β12m
3π3
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In order to solve the equations using the perturbation method, the solutions can be expanded
into series

q1 = εq10 + ε
2q11 + ε

3q12 + . . .

q2 = εq20 + ε
2q21 + ε

3q22 + . . .

ω = ω0 + εω1 + ε
2ω2 + . . .

(5.4)

Substituting these solutions into equations (5.3), and separating the terms with different orders
of ε, one can write

ω20
∂2q10
∂τ2

+ α1q10 + α2q20 = 0 ω20
∂2q20
∂τ2

+ α5q10 + α4q20 = 0 (5.5)

and

ω20
∂2q11
∂τ2

+ 2ω0ω1
∂2q10
∂τ2

+ α1q11 + α2q21 = 0

ω20
∂2q21
∂τ2

+ 2ω0ω1
∂2q20
∂τ2

+ α4q21 + α5q11 = 0

ω20
∂2q12
∂τ2

+ 2ω0ω1
∂2q11
∂τ2

+ (2ω0ω2 + ω
2
1)
∂2q10
∂τ2
+ α1q12 + α2q22 + α3q

2
20q10 = 0

ω20
∂2q22
∂τ2

+ 2ω0ω1
∂2q21
∂τ2

+ (2ω0ω2 + ω
2
1)
∂2q20
∂τ2
+ α4q22 + α5q12 + α6q

3
20

+ α8q
2
10q20 + α10q

3
10 = 0

(5.6)

To solve these equations, each pair of equations can be written in the following matrix form, for
example for equations (5.5)

[
q̈10
q̈20

]
+
1

ω20

[
α1 α2
α5 α4

] [
q10
q20

]
=

[
0
0

]
or q̈0 +Aq0 = 0 (5.7)

The modal coordinates are defined as q̂, which is related to q0 coordinates using the modal
matrix V, as q̂ = V−1q0 or q0 = Vq̂. So Eq. (5.7) can be written as follows

V¨̂q+AVq̂ = 0 (5.8)

By premultiplying V−1 in Eq. (5.8), and using well-known equation V−1AV = Λ, the result is

¨̂q0 +Λq̂ = 0 (5.9)

where Λ is a diagonal matrix. With the initial conditions q̂1(0) = 0, ̂̇q1(0) = 0, q̂2(0) = w̃max =
w/d, ̂̇q2(0) = 0 the answer to Eq. (5.5) is

q10 = v12w̃max cos(ω0τ) q20 = v22w̃max cos(ω0τ) (5.10)

where v12 and v22 are elements of the second eigenvector.
Inserting Eqs. (5.10) into (5.12)2 leads to secular terms, and eliminating these terms, gives

ω1 = 0 q21 = 0 (5.11)

Inserting Eqs. (5.10) and (5.11) into (5.6)3 and (5.6)4 leads to

ω20 q̈22 + α5q12 + α4q22 = 2ω
3
0ω2V22w̃max cos(ω0τ)− (α8V22V 212 + α6V 322)w̃3max cos3(ω0τ)

ω20 q̈12 + α1q12 + α2q22 = 2ω
3
0ω2V12w̃max cos(ω0τ)− (α3V12V 222)w̃3max cos3(ω0τ)

(5.12)
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To solve Eqs. (5.12), the following solutions are proposed

q12 = A11 cos(ω0τ) +A12 cos(3ω0τ)

q22 = A21 cos(ω0τ) +A22 cos(3ω0τ)
(5.13)

Applying Eqs. (5.13) to (5.12) and writing them as a matrix, gives

[
α5 α4 − ω40

α1 − ω40 α2

] [
A11
A21

]
=



2ω30ω2V22w̃max −

3

4
(α8V22V

2
12 + α6V

3
22)w̃

3
max

2ω30ω2V12w̃max −
3

4
(α3V12V

2
22)w̃

3
max




[
α5 α4 − ω40
α2 α1 − ω40

] [
A12
A22

]
=



−1
4
(α8V22V

2
12 + α6V

3
22)w̃

3
max

−1
4
(α3V12V

2
22)w̃

3
max




(5.14)

Substituting the elements of the right hand side of Eq. (5.14)1 into the first column of the
coefficient matrix and equating its determinant to zero enables finding ω2

ω2 =
3α2w̃

2
max(α8V

2
12V22 + α6V

3
22 + α10V

3
12)− 3α3w̃2max(α4 − ω40)V 222V12

8α2ω
3
0V22 − 8(α4 − ω40)ω30V12

(5.15)

Also, substituting elements of the right hand side of Eq. (5.14)2 instead of the first column of
the coefficient matrix and again equation its determinant to zero yields ω0

ω40 =
α6V

3
22(α4 − α2) + α4α3V12V 222 − α2α8V 212V22 − α2α10V 312

9(α3V12V 222 + α6V
3
22)

(5.16)

6. Results

In this Section, shape modes of the microbeam in the classic and augmented Biderman models
are introduced. Furthermore, the influence of d/l (thickness to the length scale parameter)
on the normalized frequency ω/ωc (augmented Biderman nonlinear frequency to the classical
Biderman frequency) is investigated. This survey will be done for the microbeam with different
single modes. The properties of the materials introduced in (Martins et al., 2006), which are
listed in Table 1, have been used for simulation.

Table 1. Properties of the microbeam

Geometric Material properties
properties (Martins et al., 2006)

c01 = 2.33 · 104 Pa
L = 30µm c10 = 0.208MPa
b = 10µm c20 = −2.4 · 103 Pa

c30 = 5 · 102 Pa

In Figs. 2 to 4, the first, second and third shape modes of the classical and augmented
Biderman models are shown. As evidenced in these figures, the augmented model predicts greater
stiffness than the classical model.
Figures 5 to 7 show that in all modes, with an increase of the ratio d/l in the augmented

Biderman model, the calculated frequency approaches the results of the classic Biderman. It is
also observed that the results of Runge-Kutta’s numerical method are consistent with the results
of the analytical method with high accuracy.
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Fig. 2. The first shape mode in the classic and augmented Biderman models

Fig. 3. The second shape mode in the classic and augmented Biderman models

Fig. 4. The third shape mode in the classic and augmented Biderman models

7. Conclusions

In this research, a simply-supported hyperelastic microbeam has been considered. The
von Kármán strain-displacement theory was applied for large deformation nonlinearity and a new
augmented Biderman model inducted from the modified couple stress theory was introduced to
consider material nonlinearity and the small scale effect. The Galerkin method and the Lindstedt-
-Poincaré procedure were used to solve the governing equation. Shape modes of the classic and
augmented Bidermn models were described and it was shown that the microbeam had stiffer
behavior in the augmented model. The influence of d/l on the normalized frequency was de-
picted for different modes. It was shown that in all modes, with an increase of the ratio d/l in
the augmented Biderman model, the calculated frequency approached the results of the clas-
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Fig. 5. Comparison between the augmented and classic Biderman models in terms of the normalized
frequencies for the first mode

Fig. 6. Comparison between the augmented and classic Biderman models in terms of the frequencies
for the second mode

Fig. 7. Comparison between the augmented and classic Biderman models in terms of the normalized
frequencies for the third mode

sic Biderman model. Validation of the results of the analytical method was carried out using
Runge-Kutta’s numerical method with high accuracy.

The strain energy of the classical Biderman model did not include the effect of small size
in hyperelastic materials. A new augmented Biderman model inspired by the modified couple
stress theory was introduced to investigate the size effect in addition to the nonlinear material
effects. This augmented model, along with its results, can be a motivation for researchers to find
values of the length scale parameters for the micro-parts made of hyperelastic materials using
experimental methods.



Free vibration of a hyper-elastic microbeam... 749

References

1. Abbasi M., Mohammadi A.K., 2014, Study of the sensitivity and resonant frequency of the
flexural modes of an atomic force microscopy microcantilever modeled by strain gradient elasticity
theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 228, 1299-1310
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